
1.  Introduction
Cloud feedbacks remain a leading source of uncertainty in estimates of climate sensitivity (Sherwood et al., 2020; 
Zelinka et  al.,  2020). One such feedback is the cloud phase feedback, which was first described by Mitchell 
et al.  (1989) as a negative feedback resulting from a shift in cloud phase partitioning from ice to liquid with 
warming. The feedback is negative because liquid cloud droplets are generally smaller and more numerous than 
ice crystals, which means that liquid clouds are optically thicker than ice clouds of the same condensate mass. A 
shift in phase partitioning from ice to liquid therefore produces an increase in cloud albedo.

The magnitude of the cloud phase feedback has proved tricky to constrain using models, largely because of 
its sensitivity to the phase partitioning of the initial state (Choi et al., 2014; Storelvmo et al., 2015; Tsushima 
et al., 2006). General circulation models (GCMs) systematically produce too much ice and too little liquid within 
the mixed-phase temperature range (−40° to 0°), especially over the Southern Ocean (SO) (Cesana et al., 2015; 
Kay et al., 2016; Komurcu et al., 2014). As a result, present-day cloud albedo is too low in many GCM simu-
lations, and the albedo enhancement associated with ice-to-liquid transitions is too dramatic. Adjustment of 
present-day phase partitioning to more closely match observations results in a weakened cloud phase feedback 
and an increase in simulated climate sensitivity (Frey & Kay, 2018; Tan et al., 2016). While these biases have 

Abstract  We conduct a global assessment of the spatial heterogeneity of cloud phase within the 
temperature range where liquid and ice can coexist. Single-shot Cloud-Aerosol Lidar with Orthogonal 
Polarization lidar retrievals are used to examine cloud phase at scales as fine as 333 m, and horizontal 
heterogeneity is quantified according to the frequency of switches between liquid and ice along the satellite's 
path. In the global mean, heterogeneity is greatest between −15 and −4°C with a peak at −5°C, when small 
patches of ice are prevalent within liquid-dominated clouds. Heterogeneity “hot spots” are typically found over 
the extratropical continents, whereas phase is relatively homogeneous over the Southern Ocean and the eastern 
subtropical ocean basins, where supercooled liquid clouds dominate. Even at a fixed temperature, heterogeneity 
undergoes a pronounced annual cycle that, in most places, consists of a minimum during autumn or winter and 
a maximum during spring or summer. Based on this spatial and temporal variability, it is hypothesized that 
heterogeneity is affected by the availability of ice nucleating particles. These results can be used to improve the 
representation of subgrid-scale heterogeneity in general circulation models, which has the potential to reduce 
longstanding model biases in cloud phase partitioning and radiative fluxes.

Plain Language Summary  At temperatures where ice and liquid can coexist within clouds, climate 
models tend to produce too much ice and too little liquid compared to satellite observations. This bias is 
likely caused by the assumption that liquid and ice are uniformly mixed, which results in the rapid conversion 
of liquid to ice for thermodynamic reasons. To reduce this bias, models need to account for the spatial 
heterogeneity (“patchiness”) of liquid and ice that exists in the real atmosphere. The goal of this paper is to 
quantify this spatial heterogeneity using satellite-based lidar observations of cloud phase. We find small pockets 
of ice in liquid-dominated clouds to be more common than small pockets of liquid in ice-dominated clouds. 
The greatest heterogeneity is found over the midlatitude continents, whereas phase is relatively uniform over 
the Southern Ocean and other maritime regions with extensive low cloud cover. In the mid and high latitudes, 
cloud phase tends to be more heterogeneous during spring and summer and more homogeneous during autumn 
and winter. These results can be used in the future to improve model representations of the thermodynamic 
processes responsible for biases in cloud phase.
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been significantly mitigated in the most recent phase of the Coupled Model Intercomparison Project (Zelinka 
et al., 2020), representing phase partitioning in a physically informed manner remains a challenge.

Biases in phase partitioning are thought to be caused, at least in part, by an overactive Wegener-Bergeron-Findeisen 
(WBF) process (McIlhattan et al., 2017; Tan & Storelvmo, 2016). The WBF process is a consequence of the differ-
ence in saturation vapor pressures with respect to liquid and ice, which, in a mixed-phase environment, can cause 
ice crystals to grow at the expense of nearby liquid droplets (Bergeron, 1928; Findeisen, 1938; Wegener, 1911). 
GCM parameterizations of the WBF process typically assume that liquid and ice are homogeneously mixed 
throughout a model grid box, which allows for efficient WBF glaciation of supercooled liquid. But aircraft obser-
vations, while limited, suggest that mixed-phase clouds often contain discrete liquid-only and ice-only pockets 
much smaller than a GCM grid box (Chylek & Borel, 2004; Field et al., 2004; Korolev et al., 2003). By reduc-
ing the spatial overlap of ice and liquid condensate, this heterogeneity could limit WBF efficiency in the real 
atmosphere, and previous work has shown that accounting for heterogeneity can mitigate model biases in phase 
partitioning (Huang et  al.,  2021; Tan & Storelvmo,  2016; Zhang et  al.,  2019). An important takeaway from 
this previous work is that there is no one-size-fits-all adjustment to WBF efficiency that improves model phase 
biases across time and space: the sensitivity of phase biases to WBF efficiency varies with location, season, and 
temperature, and this variability presumably reflects different degrees of phase heterogeneity in the real world. 
Attempts to reduce model phase biases, if they are to be physically grounded, must therefore account not only for 
the existence of phase heterogeneity but also for its spatial and temporal variability.

Understanding phase heterogeneity in the real atmosphere is a difficult problem because it occurs on scales rang-
ing from microns to kilometers (Atlas et al., 2021; Korolev et al., 2003). Capturing this range of scales requires in 
situ aircraft observations, which typically have a measurement frequency of 1 Hz (every 100–200 m, depend ing 
on aircraft speed). Studies making use of these measurements have generally shown that a relatively small 
portion of 1-Hz observations within the mixed-phase temperature range contain both liquid and ice; most are 
single-phase  or heavily dominated by one phase or the other (D'Alessandro et al., 2019, 2021; Field et al., 2004; 
Korolev et al., 2003; Zhang et al., 2019). On the whole, these studies suggest that mixed-phase conditions at 
the 100-m scale are relatively rare. This is not surprising given that mixtures of liquid and ice are thermody-
namically unstable, which is what gives rise to the WBF process in the first place. Nevertheless, these observa-
tional assessments come with considerable uncertainty arising from imperfect phase classification algorithms, 
varied definitions of “mixed-phase,” and various instrument limitations (Baumgardner et al., 2017; McFarquhar 
et al., 2013). Perhaps most importantly, aircraft observations are limited in number, and the generalizability of 
existing observations is unknown.

Spaceborne satellite observations are a largely untapped resource for studying cloud phase heterogeneity. 
Thompson et  al.  (2018) assessed phase heterogeneity at cloud top using retrievals from the Hyperion spec-
trometer, but the spatial coverage of the observations was very sparse, and they were limited to daytime hours. 
These limitations can be largely overcome by polar-orbiting satellites with active sensors, which offer near-global 
coverage over extended periods of time and can penetrate below cloud top until their signal is attenuated. While 
these satellites cannot capture the fine spatial scales observable by aircraft and Hyperion, the aircraft observations 
discussed previously suggest that a resolution of a few hundred meters can capture a large portion of cloud phase 
variability. For these reasons, we believe active-sensing satellites are a promising avenue for understanding phase 
heterogeneity on a global scale and improving its representation in models.

The goal of this work is to quantify cloud phase heterogeneity, its temperature dependence, and its spatiotemporal 
variability using spaceborne lidar measurements. In Section 2, we describe the lidar observations and develop 
a metric used to quantify phase heterogeneity in the satellite record. Results are presented in Section  3 and 
discussed in Section 4.

2.  Data and Methods
2.1.  Observational Data

Observations of cloud phase are obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 
aboard the polar-orbiting CALIPSO satellite (Winker et  al.,  2009). The reasons for using CALIOP are its 
near-global coverage and its relatively high horizontal resolution: single-shot profiles of the atmosphere have 
a vertical resolution of 30 m, a horizontal footprint of 90 m, and are recorded every 333 m along the satellite's 
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path. We take data from the L2 Vertical Feature Mask (VFM) product (v4.20; 
NASA/LARC/SD/ASDC, 2018a), which provides retrieved cloud phase at 
the single-shot resolution up to an altitude of 8.2 km. Temperature data are 
obtained from GEOS-5 reanalysis via the CALIOP L2 Cloud Profile prod-
uct (v4.20; NASA/LARC/SD/ASDC, 2018b) and are interpolated onto the 
same single-shot grid used for the phase data. Interpolation onto the single-
shot grid captures the large-scale thermal structure of the atmosphere but 
likely fails to capture small-scale temperature variations. The study period is 
from 1 December 2009 to 30 November 2012. To reduce specular reflection 
from horizontally oriented ice particles, the CALIPSO viewing angle was 3° 
off-nadir at this time.

In the CALIOP retrievals used here, cloud layer phase is determined based on 
the layer-integrated attenuated backscatter at 532 nm and depolarization ratio 
(Avery et al., 2020; Hu et al., 2009). Cloudy volumes are classified as liquid, 
randomly oriented ice, horizontally oriented ice, or unknown phase. Each 
phase determination is accompanied by a quality indicator, which we use to 
eliminate low-confidence determinations. For our study period, this removes 
17% of all cloudy pixels. As with any remotely retrieved quantity, the phase 
retrievals have several limitations. First, the phase classification scheme 
does not include a mixed-phase category despite the fact that mixed-phase 
conditions are known to occur on length scales smaller than 333 m (Atlas 
et  al., 2021; Field et  al., 2004). In such conditions, it is difficult to detect 
ice by lidar since the number concentration of ice crystals is generally much 
lower than that of supercooled liquid droplets (Mace et al., 2021). As a result, 
many mixed-phase cloud scenes are likely classified as liquid.

A second limitation is that multiple single-shot profiles must often be aver-
aged together before any cloud-related backscatter signal can be distinguished 
from background noise (Vaughan et al., 2009; Winker et al., 2009). For this 
reason, the CALIOP retrievals use an automated, multi-gridded cloud layer 
detection scheme that is thoroughly described in Vaughan et al. (2005, 2009). 
The scheme passes through the data multiple times with varying degrees 
of horizontal averaging; we refer to this along-track averaging length as L. 
Cloud features can be identified during any one of these passes, and cloud 

phase is retrieved at the same resolution that the feature was identified with. For the first pass, fifteen single-shot 
profiles are averaged into a 5-km chunk before the feature detection algorithm is applied. If a cloud feature is 
identified, two subsequent passes are done, one with L = 1 km and another at the 333-m single-shot resolution. If 
any features detected at L = 333 m are within the surface boundary layer, they are removed from the 5-km chunk 
and 5-km layer properties are recalculated; this cloud-clearing procedure is not applied if features are detected at 
L = 333 m in all 15 shots within a 5-km chunk. Lastly, two more passes are done using 20- and 80-km chunks, 
in which finer features are removed before the feature properties are calculated. The implication of this scheme 
is that single-shot phase identifications can be embedded within broader features identified at greater L. For 
example, if a cloud layer is identified with L = 5 km (i.e., when 15 single-shot profiles are averaged together), a 
single phase retrieval is performed for the entire 5-km chunk, and the phase information is simply repeated in 15 
consecutive, “single-shot” pixels in the VFM data product used here. Pixels within the 5-km chunk may be altered 
if finer cloud features of different phase are identified during the subsequent 1-km and 333-m scans.

An important consequence of the multi-gridded cloud-finding scheme is that adjacent phase retrievals are not 
always independent from one another. In fact, only 20% of the retrievals included in this analysis were made at 
the single-shot resolution; 47% were made with L = 1 km; 24% with L = 5 km; 7% with L = 20 km; and 2% with 
L = 80 km (Figure 1a). For this reason, we group cloudy pixels by their associated averaging length L and perform 
our phase heterogeneity analysis (described in Section 2.2) separately for each group. We exclude 20- and 80-km 
phase retrievals from our analysis, since they account for a small fraction of the total observations and are beyond 
our lengthscales of interest. The multi-gridded averaging also means that our results underestimate true phase 
heterogeneity and serve as a lower bound on heterogeneity at the single-shot (∼333 m) scale.

Figure 1.  Statistics of the cloud phase retrievals used in this analysis. (a) 
Number of pixels sorted by averaging length L and retrieved cloud phase; (b) 
liquid cloud fraction (LCF) as a function of L and temperature. Values in (a) 
reflect the number of pixels at the single-shot resolution, even if the phase 
determinations required averaging at a greater spatial scale. The ice category 
includes both randomly and horizontally oriented ice. Only medium- and 
high-quality phase determinations are included, and all data are from below 
8.2 km.
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In addition, the averaging length required to detect a cloud feature is itself dependent on cloud phase. Figure 1a 
shows the distribution of L for each liquid or ice pixel on the single-shot grid. In general, liquid clouds are 
detected at shorter averaging lengths. This is to be expected, since liquid clouds are, on average, optically thicker 
than ice clouds and produce a stronger backscatter signal. The disparity is especially clear for phase retrievals 
made at the single-shot resolution: two-thirds of these retrievals are liquid despite the fact that the liquid cloud 
fraction (LCF) is 0.43 for the entire set of pixels considered here. Here, LCF is simply the fraction of cloudy 
pixels with a phase identification that have been classified as liquid. Figure 1b shows how LCF varies with L and 
temperature; in general, LCF increases smoothly between −40 and 0°C, consistent with previous work (Cesana 
et al., 2016; Korolev et al., 2017). Across most of the mixed-phase temperature range, LCF generally decreases 
with increasing L, but the relationship is nonlinear: there is a large decrease in LCF as L increases from 333 m to 
1 km, but very little change between 1 and 5 km. LCF is lower again for L = 20 km, but relatively similar for 20 
and 80 km. Lastly, we note that the distribution of L may vary between day and night due to the greater level of 
background noise during the day; exploring this diurnal sensitivity is beyond our scope here.

2.2.  Quantification of Phase Heterogeneity

Previous work has quantified phase heterogeneity based on the frequency of switches between liquid and ice 
along an aircraft flight track or on the horizontal extent of single-phase patches within a cloud (Atlas et al., 2021; 
D'Alessandro et al., 2021). We take a similar approach with the satellite observations. We define the interface 
density I [km −1] as the number of switches between liquid and ice per horizontal kilometer of cloud along the 
satellite track. To compute I, we compare immediately adjacent phase observations at the same vertical level. 
The boundary between two pixels is considered to be a liquid-ice interface only if one of the pixels is liquid and 
the other is ice (either randomly or horizontally oriented) and only if both phase determinations are of medium 
or high confidence. Each cloud observation is assigned a “heterogeneity score” equal to the number of liquid-ice 
interfaces at its horizontal edges (0, 1, or 2; Figures 2b and 2c). The averaging length required to make the phase 
retrieval has not been considered up to this stage.

Once pixels have been assigned a value of 0, 1, or 2, they are sorted by temperature (1°C bins), latitude (5° bins), 
longitude (10° bins), month, and averaging length L. For each subset of observations, we then compute I as

𝐼𝐼 =
(𝑁𝑁1∕2 +𝑁𝑁2)

𝑁𝑁𝑐𝑐 ⋅ Δ𝑥𝑥
� (1)

where Δx is the horizontal resolution of the retrieval grid (0.333 km), Nx is the number of cloud observations in 
the subset with a heterogeneity score of x, and Nc = N0 + N1 + N2 is the total number of cloud observations in 
the subset (excluding low-confidence retrievals). N1 is scaled by a factor of 1/2 so that phase interfaces are not 
double-counted. The maximum possible value of I is 3 km −1 (=1/Δx), which would be achieved in the limiting 
case of an infinitely long cloud with alternating phase observations retrieved at the single-shot resolution. In this 
case, Nc = N2.

Figure 2a illustrates our methodology for three schematic cloud transects. When I is large, cloud phase is more 
heterogeneous, single-phase cloud segments are shorter in length, and there is a greater contact area between 
liquid-only and ice-only patches. This is the case in transect #3, a mixed-phase cloud in which liquid and ice 
alternate with every pixel. Conversely, small I corresponds to large patches of uniform phase. This is the case in 
the all-liquid Transect #1, which represents the most homogeneous case. Transect #2 is a compromise between 
the extremes.

Furthermore, I can be computed separately for the liquid and ice-phase observations within each data subset. We 
refer to these quantities as Iliq and Iice, which can be used to understand how the characteristic size of ice-only 
patches differs from that of liquid-only patches. Iliq and Iice are related to I by

𝐼𝐼 = LCF ⋅ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 + (1 − LCF) ⋅ 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖� (2)

When computing Iliq using Equation 1, Nx represents the number of liquid cloud observations, rather than total 
cloud observations, with a heterogeneity score of x. Iice is computed in the same manner but using the number 
of ice observations. When Iliq is large, liquid cloud observations are more likely to be adjacent to ice cloud 
observations, meaning that liquid-only patches are relatively small; conversely, small Iliq corresponds to large 
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liquid-only patches. For a set of cloud observations corresponding to a particular temperature range, time period, 
and/or latitude, the values of I, Iliq, Iice, and LCF provide an informative description of cloud phase composition 
and heterogeneity.

The heterogeneity metrics described here only reflect horizontal heterogeneity. For our purpose of improving 
model representation of subgrid-scale heterogeneity, it is appropriate to neglect the vertical dimension, since the 
horizontal extent of a GCM gridbox is ∼2 orders of magnitude larger than the vertical extent. Most of the inter-
face area between liquid-ice within a grid box would therefore be expected to arise from horizontal heterogeneity. 
Moreover, the CALIOP cloud phase retrievals are performed using layer-integrated quantities, which means that 
vertically adjacent phase retrievals are seldom independent.

3.  Results
3.1.  Temperature Dependence

We first examine how phase heterogeneity varies with temperature. Figures 3a–3c shows global mean I as a 
function of temperature and averaging length. As expected, phase retrievals made at the single-shot resolution 
are the most heterogeneous, simply because they are more likely to be independent of adjacent retrievals. But the 
variations in I across the mixed-phase temperature range are qualitatively similar for all L, so we discuss them 
here in general terms. I is lowest near the homogeneous freezing point at −40°C, increases with temperature 
between −40 and −14°C, and remains high between −14 and −5°C before decreasing slightly as temperature 
nears the melting point. Heterogeneity peaks around −5°C for all three L values in consideration, and secondary 
peaks are found at −14, −12, and −10°C for L = 333 m, 1 km, and 5 km, respectively. The peaks in I at −5 and 
−14°C mirror previous studies that documented cloud phase transition points at similar temperatures. Danker 

Figure 2.  (a) Schematic illustrating the interface density metric, I, used to quantify cloud phase heterogeneity. Each box 
represents one single-shot lidar profile and its associated phase retrieval. For simplicity, we have assumed that each retrieval 
was made at the single-shot resolution (L = 333 m). The number below each pixel indicates the heterogeneity score of each 
pixel, equal to the number of horizontally adjacent phase interfaces. Circles represent liquid and hexagons represent ice. I is 
computed for each transect following Equation 1. (b) Retrieved cloud phase and (c) corresponding heterogeneity score for a 
17-km section of the CALIPSO swath from 05:23:20 UTC on 21 May 2011.
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et al. (2022) examined low clouds over the SO and found a relative maximum in the frequency of mixed-phase 
conditions at −5°C. Moreover, they found evidence for rapid glaciation once temperatures fall below ∼−15°C, 
which is also supported by aircraft observations (D'Alessandro et  al.,  2021). Silber et  al.  (2021) found local 
minima in the occurrence of liquid in clouds over Alaska at −6 and −15°C and suggested that the minima are 
caused by the especially rapid vapor growth of ice at these temperatures. While I is not a direct measurement 
of mixed-phase conditions, the local maxima at −5 and −14°C suggests that I indeed captures the cloud phase 
transitions that we seek to understand.

Several aspects of Figure 3 suggest that the most heterogeneous cloud conditions are characterized by small 
pockets of ice within majority-liquid clouds, whereas small pockets of liquid within majority-ice clouds are rare. 
The clearest evidence for this is the fact that I is largest when liquid is the dominant phase: LCF = 0.8–0.9 at 
−5°C (Figure 1b). At this temperature, Iice is significantly larger than Iliq (Figures 3d–3f), lending confidence that 
the smallest single-phase patches are indeed composed of ice. Less obviously, the shapes of the Iliq and Iice curves 
in (Figures 3d–3f) also speak to the rarity of small liquid pockets within clouds that are otherwise glaciated. 
Starting from 0°C, Iice decreases relatively gradually as temperature decreases before flattening out at ∼−20°C. 
The gradual change reflects a gradual increase in the size of ice-only pockets as temperature falls and more and 
more liquid freezes. On the other hand, Iliq changes very little as temperature decreases from 0 to −30°C, even 
as ice becomes the dominant phase. This means that liquid-only patches persisting at such cold temperatures are 
relatively large, allowing more liquid to remain isolated from ice. Iliq abruptly increases as temperature decreases 
from −30 to −40°C, suggesting that liquid exists primarily in small pockets only at temperatures just above the 

Figure 3.  (a–c) Global mean I, (d–f) global mean Iliq and Iice, and (g–i) zonal mean I as a function of temperature for retrieval 
averaging lengths L of (a, d) 333 m (b, e) 1 km, and (c, f) 5 km. In (a)–(f), shading shows the weighted standard deviation of 
all monthly mean 5° × 5°values. Values are weighted by the cloudy pixel sample size (or by the liquid/ice pixel sample size 
for Iliq/Iice). In (g)–(i), data are only shown for bins containing at least 2 × 10 4 pixels with retrieved cloud phase. Note the 
varying y-axis scales in (a)–(f).
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homogeneous freezing point. These findings are broadly consistent with the expectation that the WBF process 
acts to quickly glaciate small liquid pockets surrounded by ice.

Above −25°C, the temperature dependence of I varies significantly with latitude, as is shown in Figures 3g–3i. 
In the Tropics, I is only weakly dependent on temperature. Since we are examining cloudy, sub-freezing portions 
of the atmosphere below 8.2 km, data from the Tropics presumably reflect tropical convective clouds that have 
penetrated above the freezing level. The weak temperature dependence of I in these regions may then indicate that 
phase heterogeneity within these clouds is relatively independent of altitude (i.e., temperature). In addition to the 
Tropics, I is only weakly dependent on temperature in the SO, Antarctic, and Arctic regions. This indicates that 
the global mean temperature dependence of I arises primarily from the mid-latitudes.

3.2.  Spatial Variability

We now turn to the spatial variability of I, which is shown in Figure 4 for four 10-°C temperature bins and 
L = 333 m and 1 km (see Figure S1 in Supporting Information S1 for L = 5 km). As may be expected from 
Figures 3g–3i, these maps show that I varies substantially across the globe, even within a fixed, narrow tempera-
ture range. In general, the patterns of spatial variability found within the two warmest temperature bins are simi-
lar, but these patterns differ in many respects from those found in the two coldest temperature bins. For example, 
the swath of east Asia centered at (40°N, 105°E) has especially high I between −20 and 0°C but especially low 
I at colder temperatures.

We focus on the spatial variability of phase heterogeneity between −20 and 0°C, which is similar for L = 333 m 
and 1 km. I is largest over central and eastern Asia, western North America, central South America, and southern 
Africa. These heterogeneity hot spots are primarily over extratropical land and, when temperature is controlled 
for, have lower LCF than other regions (Figures S2 and S3 in Supporting Information S1). On the other hand, areas 
of especially low I are typically found over oceans, including most of the SO region between 45 and 70°S and the 
eastern subtropical ocean basins. These are all regions of widespread coverage of low clouds (Wood, 2012) and 
relatively high LCF (Figures S2 and S3 in Supporting Information S1). These patterns suggest that low clouds 
near the top of the marine boundary layer have a more homogeneous phase composition than other cloud types. 
While this may very well be true over the SO, we caution that the heterogeneity characteristics of the eastern 
subtropical basins should not be immediately attributed to the low stratocumulus decks that dominate those 
regions, since subfreezing temperatures are unlikely to occur at such low altitudes there throughout much of the 
year.

It is notable that I is especially low over the SO compared to similar latitudes in the northern hemisphere (NH) 
and other oceanic regions. The sharp gradient in I in the vicinity of the Antarctic Polar Front (APF; 50–55°S; 
Freeman & Lovenduski, 2016) is consistent with the previous finding that mixed-phase clouds become increas-
ingly scarce poleward of that point (Mace et al., 2020, 2021). The causes of low heterogeneity to the south of the 
APF are likely complex, as changes in sea surface temperature and sea ice coverage are known to have myriad 
effects on boundary layer clouds (e.g., Carlsen & David, 2022; Eirund et al., 2019; Sotiropoulou et al., 2016; 
Young et  al.,  2017). Low I over the SO is also consistent with the fact that, in some models, biases in LCF 
and absorbed shortwave radiation are larger over the SO than in the extratropical NH (Kay et  al., 2016; Tan 
et al., 2016; Trenberth & Fasullo, 2010). Because low I implies relatively limited contact area between liquid 
and ice and reduced potential for widespread WBF glaciation, the failure of models to account for subgrid phase 
heterogeneity would thus be expected to produce the largest LCF biases where I is low.

It is possible that some of the spatial variability in I is due to the varied availability of ice nucleating particles 
(INPs). INPs are aerosol particles capable of driving heterogeneous ice formation at temperatures warmer than 
the homogeneous freezing temperature (−38°C). By causing localized glaciation in clouds that would otherwise 
persist as homogeneous, supercooled liquid, INPs could plausibly affect phase heterogeneity on our lengthscales 
of interest. Many of the most effective INPs, such as mineral dusts, soil dusts, and certain biological particles, 
are emitted primarily from land (Kanji et al., 2017; Murray et al., 2012), and this could contribute to the land-sea 
contrast in I found here. Moreover, several of the heterogeneity hot spots seen in Figure 4—such as central Asia, 
central South America and the western subtropical Atlantic, and the maritime region southest of South Africa—
are known regions of high concentrations of mineral dust (Adebiyi et al., 2023). If dust INPs can indeed cause 
elevated phase heterogeneity, the disappearance of the central Asian hot spot at temperatures below −20°C could 
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reflect the near-complete glaciation of clouds by abundant dust particles, which become more effective INPs as 
temperature decreases. As we shall see in the next section, seasonal variations in I also suggest that phase heter-
ogeneity is affected by INP availability.

3.3.  Annual Cycle

We now turn to the annual cycle of zonal mean I, shown in Figure 5 for four 10-°C temperature bins and L = 333 m 
and 1 km (see Figure S4 in Supporting Information S1 for L = 5 km). The composite annual cycle reflects the 
average across the 3-year study period, and we have verified that the cycle is very similar for each of the 3 years. 

Figure 4.  Mean I binned by temperature (rows; 10°C bin width) for L = 333 m (left) and 1 km (right). Values are only shown 
for grid boxes containing 2 × 10 4 or more cloud phase retrievals over the 3-year study period. Color scales vary for each map 
to highlight spatial variability. See Figure S1 in Supporting Information S1 for L = 5 km.
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The annual cycles are similar for L = 333 m, 1 km, and 5 km, so we discuss them together. It is clear from Figure 5 
that, even for fixed latitude, temperature, and L, I can vary significantly over the course of the year. At many lati-
tudes, the amplitude of the annual cycle is comparable to or greater than differences between temperature bins.

The annual cycle of I throughout most of the NH extratropics is characterized by a maximum in between March 
and June, during boreal spring and early summer. Poleward of 60°N, I decreases throughout summer and reaches 
its minimum in autumn before increasing slowly throughout the winter. In the midlatitudes, I remains relatively 
high throughout the summer and reaches its minimum in December of January, a bit later than the polar mini-
mum. In the tropical NH, the annual minimum occurs later still, in February or March, with a broader maximum 
throughout late spring and summer.

Throughout most of the Southern Hemisphere, the annual cycle of I is generally weaker in amplitude than in the 
NH but similarly features a peak during local spring or summer (October–February). As might be expected from 

Figure 5.  The annual cycle of zonal, monthly mean I (in km −1) binned by temperature (rows; 10°C bin width) for L = 333 m 
(left) and 1 km (right). Data are only shown for bins containing 2 × 10 4 or more cloud phase retrievals. Note the different 
color scales for each plot, which are intended to highlight variability. The annual cycle reflects the mean over the 3-year study 
period. See Figure S4 in Supporting Information S1 for L = 5 km.
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the low climatological I over the SO (Figure 4), the annual cycle of I there is modest in amplitude compared to 
other regions. However, the SO annual cycle is robust across different temperatures and averaging lengths, and 
the SO heterogeneity minimum during austral winter produces some of the lowest values of I seen around the 
globe. That SO phase heterogeneity is lowest during austral winter is consistent with previous work that found 
model LCF biases to be greatest during the same time of year (Figures 9 and 10 in Kay et al., 2016).

The spring and summertime maximum in I seen throughout the extratropics is broadly consistent with the idea 
that INP availability affects phase heterogeneity. Several field-based studies have found that INP concentrations 
in the Arctic surge after the springtime thaw of sea ice and land-based snow (Creamean et  al.,  2018; Tobo 
et al., 2019; Wex et al., 2019), and these seasonal fluctuations were recently found to affect cloud glaciation 
temperatures (Carlsen & David, 2022). In the SO region, I is elevated during the ice-free time of the year and 
depressed during the ice-covered seasons, suggesting that INPs may enhance heterogeneity there. In the Arctic, 
the surge in I during late spring and summer in the Arctic is aligned with the thawing of snow and sea ice, but the 
heterogeneity minimum in September–October, when sea ice coverage reaches its annual minimum, suggests that 
the relationship between heterogeneity and Arctic sea ice and snow cover is not straightforward.

A major exception to the spring and summertime heterogeneity maximum is found just north of the APF 
(30–45°S) for −30 < T < −10°C. Here, I is greatest during austral winter. The relatively abrupt shift in the timing 
of the annual cycle across the APF is aligned with the abrupt change in annual mean I there and is yet another 
piece of evidence suggesting that cloud phase characteristics change dramatically across the APF. Explaining the 
shift in the timing of the annual cycle of may be a worthwhile endeavor but is beyond our scope here.

4.  Discussion
This paper presents, to our knowledge, the first global assessment of cloud phase heterogeneity using spaceborne 
satellite measurements. The most heterogeneous cloud phase conditions, characterized by the presence of small 
ice pockets within majority-liquid clouds, are found between −15 and −5°C and tend to occur over midlatitude 
land. Phase tends to be more homogeneous over cloudy maritime regions such as the SO and the eastern subtrop-
ical basins. The annual cycle of phase heterogeneity depends on temperature and location but is generally charac-
terized by a minimum during local winter and a maximum during local spring or summer. While the patterns of 
variability found here are informative, phase heterogeneity is clearly affected by factors other than temperature, 
location, and time of year. One such factor may be the availability of INPs; our results suggest that phase hetero-
geneity is greater during times of year when INP emissions are thought to be elevated. The relationship between 
INP availability and phase heterogeneity is surely complex and, at this point, is only speculative. Future work 
may focus more on this subject and on understanding how heterogeneity is affected by factors such as cloud type, 
cloud dynamics, and thermodynamic conditions.

The use of spaceborne lidar to study phase heterogeneity has many limitations. In addition to the lack of a 
mixed-phase classification and the complications arising from CALIOP's multigridded averaging scheme 
(Section 2.1), the lidar signal attenuates at an optical depth of ∼5 (Winker et al., 2009), which means that our 
results are skewed to represent conditions near cloud top. Furthermore, about 17% of the cloud observations in 
our study period lacked a high- or medium-quality phase determination and were not included in our analysis. We 
reiterate that we have neglected vertical phase heterogeneity here, which may be a significant source of liquid-ice 
interface area over the SO (e.g., Alexander et al., 2021). Lastly, we draw attention to the sources of error discussed 
in Mace et al. (2021), who demonstrated the difficulty of observing mixed-phase clouds using spaceborne lidar. 
In particular, they documented the presence of low clouds over the SO that are mixed-phase but appear to space-
borne lidar as supercooled liquid because the layer scattering characteristics are heavily dominated by liquid 
droplets. The inability of spaceborne lidar to identify the presence of ice in such clouds is an inherent limitation 
of our methodology.

Despite these significant limitations, the patterns of phase heterogeneity captured by our metric, I, are largely 
consistent with expectations from previous work. The temperature dependence of I features transition points 
that have been documented previously (Section 3.1), and the climatological and seasonal variability of I over 
the SO is consistent with expectations from studies of model LCF bias (Sections 3.2 and 3.3). Thus, while the I 
metric used here is far from perfect, it is presumably able to capture real variability in cloud phase characteristics. 
These successes add credence to the use of spaceborne observations to bridge the gap between high-resolution, 
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limited-area aircraft data and the global scales on which GCMs operate. The ability of lidar observations to 
characterize phase heterogeneity on scales much smaller than a GCM grid box presents a valuable opportunity 
to improve model representations of mixed-phase microphysics and address longstanding model biases related 
to clouds and radiation.

Future work will focus on how to meaningfully convert satellite-derived I to a scaling parameter that can be used 
to adjust WBF efficiency in the microphysics parameterizations used in GCMs. Based on the results presented 
here, it would be wise for these implementations to account for the dependence of phase heterogeneity on temper-
ature, latitude, and time of year. Any implementation must also consider the fact that I is a measure of liquid-ice 
interface density at a fixed vertical level along a one-dimensional satellite track; even if vertical phase heteroge-
neity is to be neglected, I must still be generalized from one horizontal dimension to two. Approaches may vary 
from model to model due to differences in grid type and WBF parameterizations, and for this reason we leave the 
details of such implementation for future work.

Data Availability Statement
The CALIOP Vertical Feature Mask and L2 Cloud Profile products used in this study are publicly available at 
(NASA/LARC/SD/ASDC, 2018a, 2018b). The global data set of phase heterogeneity statistics computed for this 
paper and used to make the figures has been made publicly available (Sokol & Storelvmo, 2023).
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